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a b s t r a c t 

In this paper, the 3D coordinate data of the corrosion condition of rebar are obtained by a 3D scan- 

ning method. Seven numerical parameters, such as the roundness, the section roughness, the inscribed 

circle radius/circumscribed circle radius and the eccentricity, are obtained by the numerical calculation 

method. These seven parameters are used to characterize the cross-section morphology of rusted steel 

bars. The particle swarm optimization support vector machine (PSO-SVM) and the grid search support 

vector machine (GS-SVM) are used to calculate these seven cross-section digitization parameters to pre- 

dict the sectional corrosion rate of steel. This work concluded that these two optimization support vector 

machine (SVM) methods can accurately predict the sectional corrosion rate of steel. Compared with the 

GS-SVM model, the PSO-SVM steel corrosion prediction model is more accurate. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

After steel bars are embedded in concrete, both the internal and

xternal environment of the concrete will changed [1] , which will

ause corrosion of the reinforcement. The mechanical properties

f the steel bars will decrease due to the reduction of the cross-

ection, and the strength and ductility of the steel bars will also

e reduced [ 2 , 3 ], thereby reducing the bearing capacity and dura-

ility of the concrete structures [ 4 , 5 ]. 

To evaluate the shape, bearing capacity and durability of the

orroded steel bar to reflect the true corrosion condition of the

teel bar, scholars have conducted research on the quantitative

valuation of the corrosion condition of steel bars. The quality

orrosion rate is a parameter often used by scholars. Scholars of-

en use the weighing method to determine the quality corrosion

ate of steel bars [6-8] , but the quality corrosion rate is a rela-

ively rough measure that can only measure the average corro-

ion of steel bars. The minimum section of the steel bar cannot

e clearly reflected [9] , and at the same time, it cannot charac-

erize the detailed features of the rusted bar shape. Stewart and

l-Harthy [10] used a Vernier caliper to test the geometrical char-

cteristics of the corroded steel section and obtained the position
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nd size of the minimum cross-sectional area. Du et al. [ 3 , 11 ] ver-

ically placed the corroded steel bars into an overflow container

nd used the drainage method to measure the volume of the over-

owing water along the axial direction of the corrosion rate dis-

ribution. Zhu et al. [ 12 , 13 ] used a slicing method to cut corroded

teel bars into sections and obtained the rust rate distribution by

easuring the weight of the segmented steel sheets. However, the

bove test methods still have some limitations, there are certain

rrors in the data measurement, and it is difficult to accurately an-

lyze the cross-sectional shape characteristics of the corroded steel

ar. Zhao et al. [14] used low-field nuclear magnetic resonance (LF-

MR) imaging to investigate moisture transport in cement-based

aterials (CBMs) considering the influences of the water/binder

w/b) ratio. With the advancement of technology, scholars use X-

ay computed tomography (XCT), 3D scanning, and other methods

o determine the shape of corroded steel bars. Basically, these test

ethods may reflect the potential corrosion of steel bars. Li et al.

 15 , 16 ] used a 3D scanning method to measure the corroded steel

ar, obtained the three-dimensional coordinate data of the cor-

oded steel surface, and analyzed the extracted data; they found

hat the pit depth, the residual cross-sectional area and the mini-

um moment of inertia of the steel bars after rusting follow a va-

iety of probability distributions, and the correlation between the

it depth and the mass loss is weak. Cheng et al. [17] used Com-

uted Tomography (CT) technology to detect and measure the cor-

osion of steel bars. Sriramadasu et al. [18] used ultrasonic scatter-

https://doi.org/10.1016/j.chaos.2020.109807
http://www.ScienceDirect.com
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Fig. 1. Different sectional shapes of a corroded bar in different positions. 

Fig. 2. Corrosion condition of a section of rusted rebar. 
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ing techniques to measure corroded steel bars, which can identify

pitting corrosion. Dinh et al. [ 19 , 20 ] proposed an image processing

technique based on the automatic detection and localization algo-

rithm of ground-penetrating radar (GPR) data to identify potential

steel corrosion peaks. Dong et al. [21] proposed the XCT imaging

method for tracking and analyzing the evolution of steel corro-

sion in concrete. This detection method is very accurate, and the

cross-sectional shape of the corroded steel bar can be extracted

and digitized. Common test methods are mass method, vernier

caliper method, drainage method, XCT test method and 3D scan-

ning method. Compared with the mass method, vernier caliper

method, and drainage method, the 3D scanning method not only

has better test accuracy and test efficiency, but also can reflect the

details of the corroded steel bars tested. Compared with the high-

precision XCT method, the 3D scanning method has low cost, high

efficiency, and more accurate test results. However, during the test,

it is necessary to remove the concrete outside the steel bar and

clean the corroded steel bar. 

Compared to the above test methods for the corrosion rate of

steel bars, this study concentrates on a unique perspective of pre-

dicting the corrosion rate of the steel. The motivation of conduct-

ing this research is the fact that most existing buildings (espe-

cially the aged building) may not have the detailed design docu-

ment (i.e., rebar sizes) of the original concrete structures. In such

situations, although the current 3D scanning techniques are capa-

ble to accurately record and detect the current corrosion conditions

of the corroded steel rebars, the accurate sectional corrosion rate

(the loss over the initial condition) is still not able to be obtained.

These accurate corrosion rate values are more crucial than the cur-

rent corrosion status to determine or estimate the mechanical per-

formance of the steel bars and associated concretes. Therefore, a

predictive method is needed to address this challenge – attaining

the sectional corrosion rate for existing building structures with-

out knowing the original design parameters. A variety of predictive

modeling studies have indicated that Back Propagation(BP) neural
etworks, SVM, random forest methods, and other algorithms can

rain data and build models, and predict unknown data with strong

perability and high accuracy [22-24] . Xue and Cui [25] used a BP

eural network to repair images, which improved the image details

nd edge recognition and greatly improved image quality. Zhi and

ui [26] built a face recognition model based on principal compo-

ent analysis, a genetic algorithm and a SVM that can achieve per-

onal identity authentication well; genetic algorithms can also be

sed for various characterization and fire prediction applications.

he accuracy of genetic algorithms is reliable, the results are more

ccurate, and they have a high reference value [ 27 , 28 ]. Bousselham

t al. [29] used genetic algorithms to solve the inverse problem.

his method can be used for brain tumor screening and can be

mplemented on a graphics processing unit (GPU), which greatly

ccelerates the speed of reverse recognition in genetic algorithms.

ai et al. [30] designed a parallel genetic algorithm and proposed

n image-based detection algorithm strategy which can effectively

mprove the quality of automatic crane hoisting path planning in

omplex environments. Using a SVM model for image analysis and

udgment can improve the accuracy of recognition and provide a

etter data reference, which can be applied to many fields [31-33] .

ong et al. [34] used a random forest model to estimate the rough-

ess index of flexible pavement. The parameters included the road

raffic, the maintenance status, the structural form, and the local

limate characteristics. In total, 11,0 0 0 data samples were collected,

f which 80% of the sample was used to train the model, and

he 20% sample was used to test the prediction model. The result-

ng model has high accuracy. Intelligent algorithms can be used to

rain the known data and build models that enable accurate anal-

sis and prediction of unknown data. 

In this study, the 3D coordinate data of the corrosion condition

nd distribution of the reaction steel are obtained by a 3D scan-

ing method. First, to quantify the characteristics of the steel bar’s

orrosion conditions, we defined seven parameters related to the

ar’s corroded shapes (e.g., roundness, sectional roughness) Subse-

uently, a dataset about these seven parameters (independent vari-

bles) and the sectional corrosion rate (dependent variable) was

btained through 3D scanning techniques on prepared specimens.

hen, we built a SVM prediction model based on two optimization

ethods using these seven cross-sectional parameters to predict

he sectional corrosion rate of steel. 

. Experiment and methods 

.1. Sectional characteristics of corroded steel bar 

When a steel bar gets rusted, it may have different sectional

orrosion features. As shown in Fig. 1 , the 3D record of a corroded

teel bar from our previous experiment presents there are signifi-

ant differences between the different sections. The overall weight

volume) loss rate couldn’t reflect the detailed corrosion character-

stics in particular sections which may directly determine the final

echanical performance of the corroded steel bars and associated
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Fig. 3. Diagram of the sectional geometric parameters corroded bar. 
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oncretes. Therefore, in this study, we focused on sectional corro-

ion rate. 

The scan data is the three-dimensional position coordinates of

he surface of the reinforcement. The accuracy of these data is

.1 mm. The center point of the bottom surface of one end of the

nreinforced front reinforcing bar is taken as the coordinate origin,

here the OX axis is perpendicular to the bottom circular surface,

nd the OY axis and the OZ axis are parallel to the bottom circular

urface. Fig. 2 presents the schematic cross-section of a corroded

teel bar. the corrosion rate of steel sections is calculated in Eq.

1) . 

= 

A 0 − A 1 

A 0 

× 100% (1) 

here A 0 refers to the section area before corrosion with the same

riginal section area; A 1 is the residual section area after corrosion,

alculated by integration, as shown in Eq. (2) : 

 1 = 

∫ ∫ 
d yd z = 

1 

2 

( yd z − zd y ) = 

1 

2 

n ∑ 

i =1 

( y i z i +1 − y i +1 z i ) (2)

here y i , y i +1 is the y -axis coordinate, and z i , z i +1 is the z -axis coor-

inate 

Furthermore, as shown in Fig. 3 , we obtained the following ge-

metric parameters: r 1 is minimum inscribed circle radius of the

ection profile, r is maximum circumscribed circle radius of the
2 
ection profile, r 0 is the radius of the fitting circle of a section pro-

le, a is the short side of the fitting ellipse of a section profile, b is

he long side of the fitting ellipse of a section profile, y 0 , z 0 is the

entral coordinate of the fitting ellipse, and p is the perimeter of

he residual section of the rusted section. 

(a) Diagram of the fitting circle and the circumcircle; (b) Dia-

ram of the fitting circle and the incircle; (c) Diagram of the fit-

ing incircle and the circumcircle; (d) Diagram of the ellipse; (e)

iagram of the incircle and the ellipse. 

Upon the above geometric parameters, we defined seven cross-

ectional parameters to represent the cross-sectional corrosion fea-

ures, which include: 

η, the ratio of the radius of the minimum incircle to the radius

of the fitting circle, 

δ, the ratio of the radius of the maximum circumcircle to the

radius of the fitting circle, 

υ is the ratio of the radius of the minimum incircle to the ra-

dius of the maximum circumcircle, 

e is the eccentricity, 

ɛ is the ratio of short side of the fitting ellipse to long side of

the fitting ellipse, 

χ is the roundness; 

γ is the section roughness. 

These cross-section features can be obtained by the least

quares method via Matlab [ 33 , 34 ]. Eqs. (3) –( 9 ) were used in these



4 Y.-j. Lv, J.-w. Wang and J. Wang et al. / Chaos, Solitons and Fractals 136 (2020) 109807 

Table 1 

Composition of concrete. 

Composition Cement (P42.5) Fine aggregate Coarse aggregate Water Additives 

Wt% 14.6 29.8 48.7 6.7 0.2 

Table 2 

Composition of the HPB300 Steel Bars. 

Element C Si Mn P S Cr Mo Ni Co Cu V Sn Fe 

Wt% 1.10 0.03 0.2 0.07 0.2 0.01 0.07 0.20 0.01 0.20 0.02 0.03 97.45 
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calculations. 

η = r 1 / r 0 (3)

δ = r 2 / r 0 (4)

υ = r 1 / r 2 (5)

e = 

(√ 

y 0 2 + z 0 2 
)
/ r 0 (6)

ε = a/b (7)

χ = p 2 / (4 πA 1 ) (8)

γ = A 1 / 
(
π r 0 

2 
)

(9)

For the original situation of an unused steel bar, η, δ, υ, ε, and

γ equal 1, e equals to 0, and χ is 1 Comparatively, for a corroded

steel bar, η, υ, ε, and γ are smaller than 1, δ and χ are larger

than 1, and e is larger than 0. 

2.2. Preparation of reinforced concrete specimens 

First, 400 mm ×350 mm ×250 mm reinforced concrete speci-

mens were produced. The composition ratio of the concrete is

shown in Table 1 . Each concrete specimen contains 3 HPB300 steel

bars with diameters of 14 mm. The chemical composition of the

steel bars is shown in Table 2 . The reinforced concrete test speci-

mens were first air cured at a room temperature of approximately

25 °C for 28 days. Different types of concrete, chemical composi-

tion and compactness will greatly affect the corrosion of steel bars

in concrete. In this study, we use the same type of concrete to en-

sure that the steel bars rust in the same situation, and to ensure

that the steel bars have the same corrosion morphology. This can

ensure the consistency of steel bar corrosion. 

In the process of making reinforced concrete specimens, first,

the rust layer and oxidized material on the surface are removed,

and the 75 mm portion of the steel bar is covered with epoxy resin

to protect the steel bars at the ends. The 250 mm middle portion

of the steel bars is corroded, and the test piece is placed in a 5%

sodium chloride solution. In this paper, the steel rusting is accel-

erated by means of electrification. The steel is used as the anode,

the external metal (usually stainless steel or copper) is used as the

cathode, and a constant current or a constant voltage is applied be-

tween the anode and the cathode. Introducing chloride ions from

the external solution into the concrete causes the corrosion of the

steel bars [ 15 , 35 ]. 
.3. 3D scanning of corroded bars 

After the accelerated corrosion of the steel bar is completed,

he concrete test piece is broken, the rusted steel bar is removed

nd cleaned according to the standard method specified in ASTM

1-03. After cleaning, the surface morphology of the corroded

teel bar was measured using a 3D optical scanner with a scan-

ing accuracy of 0.05 mm. The scanning process provided three-

imensional coordinates for each point on the surface of the rein-

orcing bar. The scanning method was as described in references

 2 , 15 ]. After 3D scanning, the rusted steel bar image can be accu-

ately obtained. As shown in above Fig. 2 , the points in these im-

ges are formed by three-dimensional coordinate points. By using

he least squares method, the seven defined cross-sectional param-

ters were obtained via Eqs. (3) –( 9 ) in Matlab. The sectional corro-

ion rate was also calculated for each selected section. So, a dataset

bout cross-sectional parameters of corroded steel bars was pre-

ared (the details are described in Section 3.1 ). 

.4. Theory of the support vector machine (SVM) model 

The basic principle of SVMs [36-40] is to map the input sam-

le x on a high-dimensional feature space F via a nonlinear map-

ing function φ( x ). The linear regression function was created on

he principle of the minimization of structural risks [ 41 , 42 ]: 

 

′ = A sc ( x ) = w · φ( x ) + b (10)

here w refers to the weight vector, w ∈ F, b is the bias vector,

 ∈ R, y ′ is the predicted value, and y is the measured value. 

When solving regression fitting problems by SVMs, fitting er-

ors should be considered and permitted. Relaxation factors were

ntroduced. On the basis of SVMs, a linear insensitive loss function

 ɛ ) was introduced to obtain the regression SVM. Therefore, the re-

ression problem was converted into a solution of the objective

unction for the minimization of structural risks, namely, the val-

es of w and b for the minimization of the objective function. 
 

 

 

 

 

 

 

 

 

 

 

 

 

min 

{{
1 
2 ‖ 

w ‖ 

2 + C 
n ∑ 

i =1 

(
ζi + ζ ′ 

i 

)}

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

w · ϕ ( x ) − y i + b ≤ ε + ζ ′ 
i 

y i − w · ϕ ( x ) − b ≤ ε + ζ ′ 
i 

ζi ≥ 0 , ζ ′ 
i ≥ 0 

i = 1 , 2 , 3 · · · n 

(11)

here C > 0, which is a penalty factor. It controls the penalty degree

f each sample beyond error ɛ . ζ i and ζ i 
′ are relaxation factors in-

icating the upper and lower limits of the sample training errors

nder the condition of | y i − [ w · φ(x ) + b ] | < ε, respectively. ɛ refers

o the linear insensitive loss function: 

 ε ( y ) = 

{
0 | f ( x ) − y | < ε 

| f ( x ) − y | − ε | f ( x ) − y | ≥ ε 
(12)

Eq. (3) shows that when the absolute error of the predicted

nd measured values is less than ɛ , the absolute error would be

gnored; otherwise, it will be included in the errors. 
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Fig. 4. Diagram of the SVM regression structure. 
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While solving Eq. (2) , Lagrange multipliers c i and d i are in-

roduced to construct the Lagrange function. Convex optimization

43] was simplified as a maximization of the quadratic form, and 

he saddle point of the Lagrange equation was solved. The partial

erivative of each variable was determined and set to zero. Accord-

ng to the dual principle, it can be converted into: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

max 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n ∑ 

i =1 

y i ( c i − d i ) − 1 
2 

n ∑ 

i, j=1 

(
c i − c i 

′ )(c j − c i 
′ )(x i − x j 

)
−

ε 
n ∑ 

i =1 

(
c i + c i 

′ )
⎫ ⎪ ⎬ 

⎪ ⎭ 

s.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n ∑ 

i =1 

(
c i − c i 

′ ) = 0 

0 ≤ c i ≤ C 
0 ≤ c i 

′ ≤ C 

(13) 

When solving the nonlinear problem by means of an SVM, the

nput sample x was mapped onto the high-dimensional feature

pace F via a nonlinear mapping function φ( x ). Then, linear re-

ression of the high-dimensional feature space is performed. Con-

ersion from low-dimensional space to high-dimensional space is

ealized by K( x i , x j ) = φ( x i ) · φ( x j ) [44] . This function cannot re-

lace dot products in high-dimensional space, avoid solutions of

he nonlinear mapping function φ( x ) and greatly reduce the com-

utation time and complexity. This paper adoptes a radial basis

unction (RBF) [45] , as shown below: 

 

(
x i , x j 

)
= exp (−γ x i − x j 

2 ) (14) 

here γ is the nuclear parameter ( γ > 0) and x i − x j is the Eu-

lidean norm. After introducing the nuclear parameter, the opti-
Table 3 

Basic information of the prepared dataset. 

Geometrical characteristics Min Max

r 1 / r 0 0.46934717 0.96

r 2 / r 0 1.02536834 1.56

r 1 / r 2 0.69004853 0.92

Eccentricity 0.00157042 0.52

a/b 0.87755515 0.99

Roundness 0.97880106 1.38

Section Roughness 0.96842186 1.01

Corrosion rate of steel section 0.000756424 0.16
ization objective can be converted into 

ax 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n ∑ 

i =1 

y i ( c i − d i ) − 1 
2 

n ∑ 

i, j=1 

(
c i − c i 

′ )(c j − c i 
′ )K 

(
x i , x j 

)
−

ε 
n ∑ 

i =1 

(
c i + c i 

′ )
⎫ ⎪ ⎬ 

⎪ ⎭ 

.t. 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n ∑ 

i =1 

(
c i − c i 

′ ) = 0 

0 ≤ c i ≤ C 
0 ≤ c i 

′ ≤ C 

. (15) 

Then, the SVM nonlinear regression function can be solved. 

 sc ( x ) = 

n ∑ 

i =1 

( c i − d i ) K 

(
x i , x j 

)
+ b (16)

The diagram of the regression SVM structure is shown in Fig.

 . In Fig. 4 , A sc , the output sectional corrosion rate is a linear

ombination of intermediate nodes. Each intermediate node corre-

ponded to one support vector. x 1 , x 2 , x 3 ���, x n are input variables

nd c i − d i is network weight. 

.5. Support vector machine optimization algorithm 

.5.1. PSO algorithm 

To create an accurate nonlinear SVM regression prediction

odel, the values of the penalty factor C and the nuclear parame-

er g should be determined. Reasonable selection and optimization

f algorithms are very important for finding the optimum param-

ters of the SVM. In 1995, Kennedy and Eberhaert proposed the

SO algorithm, which could optimize the penalty factor C and the

ernel parameter g , and was characterized by the simple princi-

le, required only a few calculation parameters, performed quick

earches and had a high efficiency [ 40 , 46 , 47 ]. This algorithm can

how the dynamic particle tracking of the current search status
 Average Standard deviation 

415378 0.836540327 0.110293523 

266562 1.159350838 0.128104486 

745803 0.799415107 0.047937949 

769594 0.127400673 0.12939563 

730070 0.956720719 0.023610318 

956400 1.041947542 0.050982564 

1217775 0.9877116 0.00651862 

3595305 0.071521198 0.039892237 
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Fig. 5. Relationship between the corrosion rate and the defined geometric parameters. 
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(  
and adjust the search strategy to achieve the optimal search (see

the references for details on the algorithm) [ 46 , 48-50 ]. 

The steps for optimizing the penalty factor C and the nuclear

parameter g by the PSO algorithm are as follows: 

1) Initialization: Randomly generate the velocity and position of

the particles, set the learning factors c 1 and c 2 , and obtain the

penalty factor C and the kernel parameter g . 
2) Fitness evaluation: Calculate the fitness function value of each

particle, and initialize the local optimal value and the global

optimal value. 

3) Renewal process: Update the velocity and position of the par-

ticle to generate a new population, compare the fitness value

with its own historical optimal value, and update the global op-

timal values of the population parameters C and g. 

4) Stop condition: When the maximum generation is reached, the

optimization stops and the optimum C and g are output. 
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Fig. 6. 3D views of the GS optimization, (a) Optimization within a large scope, (b) Optimization within a small scope. 

Fig. 7. Contour map of the GS optimization, (a) Optimization within a large scope, (b) Optimization within a small scope. 
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Fig. 8. PSO optimization. 
.5.2. Grid search (GS) algorithm 

The basic principle of optimization via grid search is to conduct

ptimization within a large scope first and then within a narrowed

cope. The values of C and g were selected in a certain grid. Train-

ng sets for C and g were obtained by K-CV cross validation to ver-

fy the accuracy rate of the classification. Finally, the C in the train-

ng set with the highest accuracy rate was selected as the optimal

arameter [51] . 

.5.3. Evaluation indexes of the prediction model 

MRE, MAE, RMSE, R 

2 and MSE were employed to evaluate the

erformance and prediction effects of the SVM model [52] . The

RE reflects the departure degree of the predicted value, the MAE

hows the real error of the predicted value, the RMSE measures the

eviation between the predicted value and the real value, and MSE

eflects the difference between the real value and the predicted

alue [53-55] . For these indexes, value approaching zero indicate

 small error. R 

2 measures the fitting degree of a model, where a

alue approaching one indicate a good fit. 

RE = 

| y i ′ − y i | 
n y 

(17) 

i 
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Fig. 9. Prediction results of the testing sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Relative error between the predicted value and the measured value. 
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MAE = 

1 

n 

n ∑ 

i =1 

∣∣y i ′ − y i 
∣∣ (18)

RMSE = 

√ ∑ n 
i =1 ( y i 

′ − y i ) 
2 

n 

(19)

R 

2 = 

∑ n 
i =1 ( y i 

′ − y i ) 
2 

∑ n 
i =1 ( y i − y i ) 

(20)

MSE = 

∑ n 
i =1 ( y i 

′ − y i ) 
2 

n 

(21)

where y i 
′ refers to the predicted value, y i is the real value, and y i 

is the mean of real value (i = 1,2,…,n) 

3. Results and discussion 

3.1. Correlation analysis of the section characteristics and the 

corrosion rate of a rebar section 

In this study, the authors attempt to establish the relationship

between the corrosion rate and the geometry of the steel sections.

The basic dataset information is shown in Table 3 . In Section 2.3 ,

we define seven geometric parameters based on the cross-sectional

shape of the corroded steel, as shown in Eqs. (3) –( 9 ). The relation-

ship between the corrosion rate of the steel section and the seven

geometric parameters is shown in Fig. 5 . According to the figure,

the related coefficients (R 

2 ) were between 0.1089 and 0.2929, and

the correlation between a single geometric parameter and the sec-

tion corrosion rate is very weak, indicating that it is difficult to

predict the section corrosion rate of steel bars by a single geomet-

ric parameter because the corrosion of rebar sections is not deter-

mined by a single geometric factor but by multiple factors. As a re-

sult, the prediction of rebar corrosion via a steel geometric bar can

be transformed into a high-dimensional nonlinear problem, which

is very suitable for solving with a support vector machine. 

3.2. Analysis of the prediction results from the SVM model 

3.2.1. Analysis of the parameter optimization 

The penalty factor C and the kernel parameter g are a low-

fitness combination of the optimization algorithm. To compare the

effects of parameter optimization, K-fold cross validation (K-CV) is

applied to the training sets. Optimization of C and g is conducted

by a grid search (GS) and particle swarm optimization (PSO), re-

spectively. For GS optimization, rough optimization is conducted

first to determine the optimum parameter, and then fine optimiza-

tion is conducted to choose the parameters, where both C and g are

within [ 2 −8 , 2 8 ] with a step interval of 0.5. Fig. 6 (a) is a 3D picture

of the cross-validation of C and g within [ 2 −8 , 2 8 ]. Fig. 7 (a) is a
icture of cross-validation and then further narrows the optimiza-

ion range. Figs. 6 (b) and 7(b) are the 3D pictures of the cross-

alidation of C and g within [ 2 −4 , 2 4 ] and a 2D picture of cross-

alidation, respectively, where the x-axis, y-axis and z-axis indi-

ate the RBF kernel parameter, the penalty factor C and the mean

quare error MSE, respectively. The optimization scope is gradually

arrowed down to obtain the optimal parameter combination. By

S optimization, when the MSE reaches its minimum value, then

 = 5.6569 and g = 16. 

By PSO optimization, the initial parameters are set up as the

ollowing: Q = 20, E = 100, c 1 = 1.4 and c 2 = 1.6. According to Fig.

 , after 100 iterations, the optimum fitness is gradually obtained

rom the average fitness to obtain the optimal parameter combina-

ion. In the process of selecting the optimum parameters, the MSE

s selected to evaluate the parameters. When the MSE reaches its

inimum value, then C = 1.998 and g = 51.096. 

.2.2. Analysis of the prediction results 

In this study, the GS-SVM and PSO-SVM models are used to

rain and predict the data in the sample set. In this study, 1050

orroded steel cross-section data are selected, from which 10 0 0

ata points are randomly chosen as the training set. After train-

ng with the training set, the remaining 50 rebar sections formed

he testing set, and its prediction results are shown in Fig. 9 . To

ssess the accuracy of the prediction results of both models, the

RE, MAE, RMSE, R 

2 , and MSE are selected. The prediction results

f the testing samples for both the PSO-SVM and GS-SVM models

re shown in Fig. 11 , and their fractional errors are shown in Fig.

0 . According to these figures, the MRE, MAE, RMSE and MSE val-

es are low in both models, and the R 

2 values of both models are

reater than 0.9, indicating that both models may be applied to

he evaluation of the sectional corrosion rates of steel bars. Hence,

oth models can be used to correctly predict sectional corrosion

ates of steel bars according to the parameters of the corroded bar.

According to Fig. 9 , the maximum relative errors of the PSO-

VM and GS-SVM models are 0.394329 and −0.797804, respec-

ively, and their minimum relative errors are −0.0 0 0731 and

0.007548, respectively. Both the maximum and minimum relative

rrors of the PSO-SVM model are less than those of the GS-SVM

odel, showing that the PSO-SVM model has a higher prediction

recision. According to Figs. 11 and 12 , the values of the MRE, MAE,

MSE, and MSE of the PSO-SVM model are smaller than those of

he GS-SVM model and its R 

2 is close to 1, indicating high predic-

ion precision, good fitness, and performance. In the PSO-SVM al-

orithm, all particles adjust their speed and position according to

he current single extreme value they find and the current global

ptimal solution shared by the entire particle swarm to obtain

he optimal solution, which has advantages in the prediction of

ore sample data. Grid search algorithm is a practical data search

ethod, which is suitable for searching multi-dimensional arrays

n parallel from different growth directions at the same time. The
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Fig. 11. Relations between the predicted value and the actual (measured) value. 

Fig. 12. Indexes for the evaluation of the average prediction effects. 
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rid search method is to search for a combination of parameters to

btain the best parameters, which has advantages in the prediction

f smaller sample data. The sample data in this article is large, and

SO-SVM is more suitable for the data situation in this case. 

. Conclusion 

In this work, we quantified the characteristics of sections of cor-

oded bars and then established a comprehensive corrosion rate

odel of rebar sections by the PSO-SVM and GS-SVM models. The

eveloped comprehensive corrosion rate model involves seven pa-

ameters, namely, the ratio of the radius of the smallest incircle to

he radius of the fitting circle ( η), the ratio of the radius of the

argest circumcircle to the radius of the fitting circle ( δ), the ratio

f the radius of the smallest incircle to the radius of the largest cir-

umcircle ( υ), the eccentricity (e), the ratio of the short side of the

tting ellipse to the long side of the fitting ellipse ( ɛ ), the round-

ess ( χ ) and the section roughness ( γ ) to characterize section fea-

ures of the corroded bar. The testing results demonstrated that the

rediction of the rebar section corrosion rates models using the

wo methods PSO-SVM and GS-SVM are very accurate (R 

2 > 0.9).

omparatively, the section corrosion rates prediction accuracy of

he PSO-SVM model (R 

2 = 0.98) is slightly higher than the accu-

acy of the GS-SVM model (R 

2 = 0.92). Additional, to validate and

urther implement this predictive method, the other types of con-

rete structures with different steel bars would be investigated by

ollowing the procedure and method established in this paper. The

urpose of this study is to propose a method for predicting cross-

ection corrosion rate using SVM. The influence of these 7 param-
ters on the prediction of the corrosion rate of steel bars has not

een studied. 
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